Search results for "Positive form"
showing 3 items of 3 documents
Extensions of Representable Positive Linear Functionals to Unitized Quasi *-Algebras: A New Method
2014
In this paper we introduce a topological approach for extending a representable linear functional \({\omega}\), defined on a topological quasi *-algebra without unit, to a representable linear functional defined on a quasi *-algebra with unit. In particular, we suppose that \({\omega}\) is continuous and the positive sesquilinear form \({\varphi_\omega}\), associated with \({\omega}\), is closable and prove that the extension \({\overline{\varphi_\omega}^e}\) of the closure \({\overline{\varphi_\omega}}\) is an i.p.s. form. By \({\overline{\varphi_\omega}^e}\) we construct the desired extension.
An Introduction to Hodge Structures
2015
We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kahler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Fin…
Some representation theorems for sesquilinear forms
2016
The possibility of getting a Radon-Nikodym type theorem and a Lebesgue-like decomposition for a non necessarily positive sesquilinear $\Omega$ form defined on a vector space $\mathcal D$, with respect to a given positive form $\Theta$ defined on $\D$, is explored. The main result consists in showing that a sesquilinear form $\Omega$ is $\Theta$-regular, in the sense that it has a Radon-Nikodym type representation, if and only if it satisfies a sort Cauchy-Schwarz inequality whose right hand side is implemented by a positive sesquilinear form which is $\Theta$-absolutely continuous. In the particular case where $\Theta$ is an inner product in $\mathcal D$, this class of sesquilinear form cov…